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ABSTRACT

This is the final report for the Air Force Office of Scientific

Research grant entitled "A Study of Texture Analysis Algorithms." As

such this report attempts to provide an overview of the research that

was performed and to provide a chronology of the events which precipitated

the various studies conducted. The research described ranges from develop-

ing a theoretical comparison method for evaluating the innate abilities

of texture analysis algorithms to a formal mathematical method for de-

fining texture measures. The desire was to develop improved texture

analysis methods through a systematic theoretical development process. The

goal was to create a texture analysis algorithm which could match a level

of human perception. The studies described include a comparison of

some texture analysis algorithms, the development of a structural texture

analyzer based on statistical methods, the examination of texture pairs

which are counter examples to the Julesz conjecture, the development of

an image segmentation method based on texture analysis methods, the

development of a target recognition strategy based on texture methods,

and finally a formal mathematical procedure for defining texture measures.
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1. INTRODUCTION

Purpose of this report is to review the research sponsored by the

Air Force Office of Scientific Research under the title "A Study of Tex-

ture Analysis Algorithms from March 1, 1979 to August 31, 1982. Further

an attempt will be made to put the results obtained in context of what

was happening in the image analysis community as a whole.

The major research questions considered were the following.

(i) Which texture analysis algorithm is the best?

(ii) Can this algorithm be improved?

(iii) If so how can the improvement be made?

(iv) Can it be improved to the point where it can match a level
of human texture perception?

(v) Can it be used to obtain visually meaningful information?

(vi) How can the algorithm be used to perform useful image
analysis tasks?

The answers obtained to these questions will be described in

chronological order. In those instances where the results have been

published in a journal the descriptions will be brief with only the con-

text in which the research was performed given and a summary of the major

findings presented. In those instances where the results have not yet

appeared in a journal the description of the research and the results

will be more complete.

Since most of the work has centered around the spatial gray level

dependence method (SGLDM) texture algorithm [1,2,3] the discussion will

begin with a brief description of this procedure.

_ -1 . . , , , 1 ,
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2. A DESCRIPTION OF THE SGLDM

The heart of the SGLDM is the cooccurrence matrix. To define this

matrix some definitions are in order.

Definiton 1: A tile T is a closed topological disk.

Dejiniion 2. A function o:E 2 - E2 is called an i.0mefy or

con9uence transformation if it maps the Euclidean plane onto itself and

if the function preserves distance. That is, if x and y are points in E
2

then 1 x- YlI = [O(x) - o(y)[1.

A cooccurrence matrix S(6,T) = [s(i,j,6,T] is a matrix of estimated

second-order probabilities where each element s(i,j,6,T) is the estimated

probability of going from gray level i to gray level j given the displace-

ment vector 6 = (Ax,Ay) and T, the region size and shape used to estimate

this probability. In this context T is a tile such that s(i,j,6,T) is

estimated from the restriction of the picture function g(x) to aC(T) where

a is a translation isometry. Computationally S(6,T) is determined using

the equation

s(i,j,6,T) = {AI2_, x+6 E aCT), g(_= i, g(x_+6) = ii

N

where N = 0{xlx, x+6 c T} and where 0 denotes the order of the set, i.e.,

the number of elements.

In what follows it is frequently convenient to consider 6 = (Lx,Ay)

not in a cartesian form but rather in a polar form 6 = (d,e) where

d = max [Ax,Ay] and 6 - arc tan (Ay/Ax). In this polar form d is called the

intersample spacing distance and 0 is called the angular orientation

Typically five measures have been defined off each cooccurrence

matrix. These are

2



g

1. Energy

L-1 L-l
E(6,T) = Y. [s(i,j,6,T)] (1)

i=O j-0

2. Entropy

L-1 L-1

H(6,T) =- I s(i,j,6,T) log [s(i,j,6,T)] (2)
i=o j=0

3. Correlation

L-l L-l

C(5,T) = I (i-wx)(i-py) s(i,j,6,T) (3)

i=0 j=0
a a
xy

4. Local Homogeneity

L-l L-1

L(J,T) = I 1 1 s(i,j,6,T) (4)

i=0 j=0 i + (i-j)2

5. Inertia

L- 1 L- 1 2
1(6,T) = I (i-j) s(i,j,6,T) (5)

i=0 j=o

where

L-1 L-1

P, 
= I i I s(i,j,6,T), 

(6)

1=0 j=o

L-1 L-1
y = J i O

L-l L- 2

ax = I (i-p x ) s(i,J,6,T),iwo j-o

and

3
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C L-lL-l y2 s(i,J,6,T).

i=O j=O

and where L is the number of gray levels.

The cooccurrence matrices would seemingly be motivated by the

early work of Julesz [4]. Darling and Joseph [1] first defined measures

off these matrices for use in texture analysis and Haralick, et al

[3,4] can be credited for using these matrices as the heart of a texture

analysis system.
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3. COMPARISON AND IMPROVEMENT OF TEXTURE
ALGORITHMS

The motivation for a comparison of texture analysis algorithms is

clear since the first choice an investigator faces when attempting to

solve an applications problem is the selection of the algorithm to be

used. Yet in 1979 there had been only one major effort to compare the

relative merits of various texture algorithms. This study was conducted

by Weszka, Dyer and Rosenfeld [5). Admittedly other studies had involved

the use of multiple texture analysis algorithms. Kruger, et.al [6]

had employed both the SGLDM and the power spectral method (PSM) [7] but

no real evaluation was done . Rather the use of multiple algorithms was

merely coincidental to his work on the computer assessment of Coal Workers'

Pneumoconiosis. Mitchell, et. al [8] did attempt to compare the max-min

method to the SGLDM but the major thrust of the work was in introducing

the Max-Min method with only a small effort expended to do the comparison.

The Weszka, Dyer and Rosenfeld study compared the relative abilities

of the SGLDM, PSM, gray level run length method (GLRLM) [9] and the gray

level difference method (GLDM) [5] to discriminate terrain types from

aerial photographs. The metric of comparison was the percentage of

overall correct classification, a classification result comparison (CRC).

The conclusions reached can be summarized as follows:

1. The features based on the SGLDM and the GLDM did about equally

well in separating the various classes considered.

2. The features based on the SGLDM and the GLDM did somewhat better

than the features based on the PSM.

3. The features based on the GLRLM performed markedly worse than the

features based on the other three methods, so much so in fact,
that the GLRLM was not considered in their main study.

4. The discriminatory power of the SGLDM and the GLDM improves
when several intersample spacing distances are used.
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The main drawback of the Weszka, Dyer and Rosenfeld work was the

CRC methodology employed. This comparison approach has three signifi-

cant drawbacks. These are:

1. To obtain a high confidence level in the results, the data base
must be large.

2. The comparison results obtained from a data base of aerial photos
may not be indicative of the relative power of the algorithms
if they are applied to data bases of other textural types.

3. The CRC does not provide any insight into why one algorithm per-
forms poorly and another performs well.

This last point means the CRC cannot be used, for example, to determine

whether the set of features defined on the power spectra are inadequate

thus causing its poor performance on a particular problem or whether

the power spectra is itself at fault because it does not contain all the

important texture information needed to do the discrimination. Rather

the CRC measures the effectiveness of whole texture analysis systems such

as is shown in Figure 1.

To address the obvious shortcomings of the CRC approach the authors

developed a new theoretical evaluation procedure [10]. This methodo-

logyy was not dependent on the set of features used with an algorithm

but rather it measured the amount of important texture-context information

contained in the intermediate matrices of the algorithm. The algorithms

considered were the SGLDM, GLDM, GLRLM and PSM. These algorithms were

chosen because they were frequently used and because considering then

allowed a check of the results obtained using the new procedure with

those obtained by Weszka, Dyer and Rosenfeld.

The principal results obtained by the new evaluation method were

(i) The cooccurrence matrices contain more important texture context
information than the intermediate matrices of any of the other
algorithms;

6
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(ii) the discriminatory power of the cooccurrence matrices in-
creases as more 6's are used;

(iii) to infer visual qualities of patterns in general requires
more than one 6 value be used; and

(iv) the energy entropy, correlation, local homogeneity and inertia
measures defined in Equations 1-5 do not gauge all the im-
portant texture-context information contained in the cooccurrence
matrices.

These conclusions are reinforced by the fact that in those areas where there

was an overlap there was a very good agreement between the results ob-

tained using the new theoretical method and those obtained by Weszka,

Dyer and Rosenfeld.

The only difference between the Weszka, Dyer and Rosenfeld results

and those obtained using the theoretical approach evolves around the

fact that GLDM and the SGLDM did about equally well discriminating terrain

types whereas the cooccurrence matrices were shown to contain more im-

portant texture-context information than the intermediate matrices of

the GLDM. If the SGLDM is indeed innately more powerful than GLDM one

might expect some noticeable difference in the performance of the two

algorithms on real world data.

However, a very preliminary study shows at least one explanation

for this difference. Consider the textures shown in Figure 2.

These two textures can be discrminated based on information con-

tained in the cooccurrence matrices. However, these two textures

cannot be discriminated by the energy, entropy, correlation, local

homogeneity and inertia measures (Equations 1-5). Consequently this

leads one to believe that the comparable performance of the two algorithms

on the terrain data might be due to the poor quality of energy, entropy,

correlation, local homogeneity, and inertia measures and not to the fact

8
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Figure 2. Two textures which cannot be discriminated by the energy,
entropy, correlation, local homogeneity and inertia measures
but which can be discriminated by information contained in
the cooccurrence matrices.



that the cooccurrence matrices do not contain more texture-context

information than the intermediate matrices of the GLDM.

The only other algorithm which has been shown to be comparable to the

SGLDM is the max-min method [8]. As was stated previously Mitchell, et.al

[8] compared the max-min procedure to the SGLDM using the CRC criteria.

The comparison together with the fact that the max-min method is com-

putationally less complex than the SGLDM would seemingly make it a desirable

alternative.

However, there are three points to be considered. First it is unclear

how many 6 values were used in the application of the SGLDM. Consequently

the full power of the SGLDM may not have been utilized. Secondly, the

max-min method cannot discriminate the texture pair shown in Figure 2.

Remember that these textures cannot be discriminated by the energy,

entropy, correlation, local homogeneity, and inertia measures hence part

of the reason for comparable performance could be the poor quality of the

measures defined off the cooccurrence matrices. Lastly the max-min method

cannot discriminate many very simple textures such as those shown in

Figure 3. Note that the cooccurrence matrices contain information that

can easily be used to discriminate these patterns. The inability of the

max-min method to discriminate such truly simple patterns is in the

authors' minds the most damaging evidence against it. This inability

seemingly indicates an innate weakness in the algorithm.

The research work described Ii [10] and in formulating the above

arguments addresses research questions (i) and (ii) given in the Intro-

duction. In particular the answer to (i) appears to be that the SGLDM

is the best available algorithm in that the cooccurrence matrices upon

which it is based contain more important texture context information.

Further the work indicates that the energy, entropy, local homogeneity,

10



Figure 3. Very simple textures which cannot be discriminated by the

max-min method. Note the cooccurrence matrices.
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and inertia measures are weak. Consequently the most reasonable course

of action seemed to be to attempt to define new more powerful measures

which gauge all the important texture-context information contained in

the cooccurrence matrices.

12
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4. GAUGING VISUALLY PERCEIVABLE QUALITIES
OF TEXTURE PATTERNS

Given the above, question (iii) in the Introduction becomes "how

can superior texture measures be defined?" The problem of defining

quality measures has plagued image analysts for years. The authors' de-

sire was to develop as formal a measurement definition process as possible.

And, at the very least, the hope was that some engineering type design

principles could be found for formulating a set of new measures. Ob-

viously as the research progressed the methods of approach varied. In

this section some of the tactics used will be described. The most current

thinking on the problem will be given in another section.

When the measurement definition work began it seemed to the authors

that "best" measures would be ones which could be used to gauge visually

perceivable qualities of patterns. Consequently the first engineering

design requirement was that each new measure should be able to gauge a

visual quality of a pattern.

Since at the time this research was being conducted there had only

been one study, one done by Rosenfeld and Troy [i], indicating that

a measure defined off cooccurrence matrix could be used to gauge a visual

quality, there was some doubt as to whether any such measures could be

defined. The Rosenfeld and Troy study was performed in 1970 and consider-

ed the use of the inertia measure to gauge textural coarseness. While

the results of the study were positive only a few textures were considered.

Further since no follow up studies were reported on this topic the ability

to define a set of measures each of which, indeed any of which, satisfied

the design requirement seemed in doubt.

Consequently the first task was to define a measure which could gauge

some visual quality. After a review of some perceptual psychology

13
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literature a candidate visual quality was found, the quality of texture

periodicity. Psychologists [12,131 havebelieved for sometime that humans

can effortlessly detect periodicity. The reason for choosing this

particular perceptual quality was that periodicity has a precise mathe-

matical definition. Perceptual concepts are in general vaguely

defined without a concise mathematical translation.

Research considering periodic textures quickly yielded a number of

results. To explain these results consider the texture shown in Fig-

ure 4. As will be observed it is made up of small black squares regularly

spaced on a white background.

Consider, for a moment, only the e = 00 (horizontal) direction. It

can be shown that for T large enough the following observations about the

horizontal cooccurrence matrices S(d,00 ,T) (note it is assumed here that

6 = (d,e)), d = 1,2,..., are true.

1. S(ZH,00 ,T) is a diagonal matrix, i.e., it has no nonzero off dia-

gonal elements.

2. S(d,O,T), d = 1,2,...,Z h-1 have nonzero off diagonal elements.

3. S(Q + n,O,T) = S(mtH + n,O*,T), m,n = 1,2,..., that is the

horizontal cooccurrence matrices are periodic with period kH*

The comments concerning the texture of Figure 4 generalize to any

periodic texture g(x). If (p,o) is a vector indicating the period of g(x) in

the direction e then it can be easily shown that for T large enough

1. S(p,O,T) is a diagonal matrix;

2. S(d,e,T), d = 1,2,...,p-1, have nonzero off diagonal elements;
and

3. S(p+n,e,T) = S(mo+n,e,T), m,n = l,s,..., that is S(d,e,T) is
periodic with period p.

The above indicates that to detect periodicity one must detect the

presence or absence of nonzero off diagonal elements in the cooccurrence

matrices. Consequently a possible form for a measure which could gauge

14
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Figure 4. A simply periodic texture composed of squares which
are regularly spaced on a white background.
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periodicity is

L I-

Ji - jj n S(d,e,T) (7)
i=0 j=O

where n is a natural number. For any measure of this form an examination

of the measurement's values as a function of intersample spacing distance

can be used to detect periodicity of a pattern.

In particular, consider the inertia measure defined in Equation 5.

Note that the inertia measure is of the form given in Equation 7. Hence

the above observations tell us that this measure can be used for periodicity

detection. To see how this can be done consider the plot shown in Figure 5.

This plot is of the horizontal inertia measure computed from the texture of

Figure 4. It is plotted as a function of the intersample spacing distance

d. Two points should be noted about this plot. First, the points where the

inertia measure is zero, i.e., take on minima, correspond to intersample

spacing distance values which are integer multiples of kH' Secondly, note

the periodic structure of the inertia measure. This reflects the periodic

structure of the matrices S(d,e,T), d = 1,2,....

Experiments with real world textures indicate that the inertia measure pro-

vides a basis for a "robust" method for determining periodicity. The idea is to

look for local minima and periodic structure in the inertia plots just

as in the example above.

Given that the inertia measure could be used for gauging periodicity

the question was whether methods could be formulted to use this periodicity

detection capability to find the unit pattern of a texture. Intuitively

textures are defined by unit patterns and placement rules. If one could

find the unit pattern and placement rules this certainly would be a step

toward creating a structural texture analysis system.

16
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Figure 5. A plot of the horizontal inertia measure extracted from

the texturegiven in Figure 4.
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To attack this problem the authors formulated a model for texture

based on mathematical tiling theory. The utility of this model was that

it yielded the fact that every periodic texture could be decomposed

into a period parallelogram unit pattern. The benefit gleamed by con-

sidering a period parallelogram unit pattern as the unit pattern of a periodic

texture g(x) stems from the fact that the shape, size and orientation of the

unit pattern together with the rules governing its placement are all com-

pletely defined by two non-parallel vectors a and b. This fact is illus-

trated in Figure 6.

The above research results were reported in 114]. These results showed

that a measure defined off the cooccurrence matrices could be used to gauge a

visual quality of patterns. Secondly, it indicated that the measures de-

fined off the cooccurrence matrices could be used as the basis for a

structural textural analyzer, a structural analyzer based on statistical

methods. This procedure is called a statistical structural analyzer (SSA).

To evolve the SSA required the definition of additional measures.

Therefore work on the measurement definition problem continued. As the

work progressed the concept of what embodies the "best" measurement set

was refined. In particular the "best" measurement set is one which satisfies

the following criteria.

1. Each measure in the measurement set should "gauge" some visually
perceivable quality of a texture pattern.

2. The measures in the measurement set should be "independent."

3. Given any visually distinct pair of textures there should be at
least one measure in the measurement set such that the value of
this measure is different for the two textures comprising the

pair.

In the above the meaning of the word "independent" can best be de-

scribed by an example. Suppose that one has a measurement set composed of

three measures, Mi, M2, and M 3. These measures are said to be independent if:

18



Figure 6. Two vectors a and b completely define the tile P and the
placement rules of a period parallelogram unit pattern.
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a) there exists a visually distinct texture pair such that the ex-

pected values of the measures M1 and M2 are the same for both
textures in the pair but the expected value of M1 is different
for the two textures;

b) there exists another visually distinct texture pair such that
the values of M and M are the same for both these textures

but the expected value of M2 is different; and

c) there exists a third texture pair such that the expected values

of the measures M1 and M are the same for both these textures
but the expected value oi measure M3 is different for these two
textures.

The extension of the above example to n measures is straightforward.

The above criteria,in essence,dictate the method for defining new

measures. The required steps are:

DSl. demonstrate the need for an additional measure in the
measurement set;

DS2. abstract the visual quality to be gauged and define a
candidate measure to gauge this quality;

DS3. establish that the candidate measure does gauge this

quality; and

DS4. verify that the candidate measure is independent of the
previously defined measures.

To see how these design steps can be used consider the situation at

this point in the measurement definition process. A measure, the inertia

measure, has been defined. It has been shown that this measure can be

used to gauge a visual quality of texture patterns, namely texture periodi-

city. Now the question is whether or not any other measure is needed, i.e,

tne question posed by DSl. To demonstrate a need for a new measure it

must be shown that there exists at least one visually distinct texture

pair which cannot be discriminated using the inertia measure. Such a

texture pair is shown in Figure 7. This texture pair cannot be dis-

criminated by the inertia measure but can be discriminated using infor-

mation in the cooccurrence matrices not gauged by the inertia measure.

20
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Figure 7. A visually distinct pair of textures which cannot be dis-

criminated using the inertia measure but which can be dis-
criminating by other information inside the cooccurrence
matrices not gauged by the inertia measure.
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In the case of this particular texture pair the human visual discrimi-

nation was attributed by Julesz [4] to the perceptual concepts of unifor-

mity and proximity [15] or what Julesz called cluster formation. Con-

sequently, the candidate visual quality required by DS2 was easily selected,

the goal being to define a measure which gauged the perceptual concepts

of uniformity and proximity. To determine what form the new measure should

take an analysis of the expected values of the cooccurrence matrices of the

two textures of Figure 7 was conducted. This led to the definition of a

candidate measure. This candidate was tested on a number of other simple

patterns whose human discrimination seemed at least partially based on uni-

formity and proximity.

Therefore this candidate was added to the measurement set. The new

measure is called the cluster shade measure. It is defined by

L-1 L-1 3
A(6,T) = I I (i + j - 1, - iy ) s(i,j,6,T) (8)

i=0 j=0

where i and y defined in Equation 6.

Using a similar design process another measure, the cluster promi-

nence, was defined. The texture pair which demonstrated the need for

the cluster prominence measure is shown in Figure 8. The cluster prominence

is defined by

L-I L-1 4
B(6,T) = Y (i + j - x - jy ) s(ij,6,T) (9)

i=0 j=0

where w and u. the same as in Equation 6.x y

The studies resulting in the definition of the cluster shade and

cluster prominence measures was reported in [16].

Before continuing three observations are in order. First, the

cluster shade measure is "independent" of the five measures defined in
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Figure 8. Two visually distinct texture pair which cannot be

discriminated by the inertia or cluster shade measures.
The existence of such a texture implies the need for

another measure.
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Equations 1-5. To see this observe that this measure can be used to

discriminate the texture pair in Figure 2. Next the measurement set

containing the inertia measure, the cluster shade measure and the cluster

prominence measure is known not be be "complete" in that there is at

least one visually distinct texture pair which cannot be discriminated

by these three measures. Finally as unlikely as it might seem based

on the Equations 4 and 9 which define the local homogeneity and the

cluster prominence measures these two measures are seemingly highly

correlated. Current research indicates that the local homogeneity

measure may be the better choice for inclusion into the measurement set.

However, the measurement set consisting of the inertia, cluster shade

and local homogeneity is not complete either.

The new measurement definition process, i.e., the one based on

design steps DSl-DS4, while being better than a purely heuristic approach

still has a number of obvious shortcomings. First while the need for

each measure is established ( a requirement not usually imposed in purely

heuristic approaches) the definition process is still performed by the

human being examining cooccurrence matrices and abstracting a mathematical

function to gauge some desired structure in these matrices. The diffi-

culty here is that the number of textures whose cooccurrence matrices can be

examined is usually very limited. Secondly, the human ability to abstract

a mathematical function to gauge the structure is limited. There is no

way to assure a minimal amount of correlation among the measures defined

by the process. And, of course, finally there is the theoretically displeas-

ing possibility that two investigators using this procedure could arrive

at two completely different measurement sets. With all these facts in

mind the problem continued to be investigated but the major emphasis of

the research changed..
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5. MATCHING A LEVEL OF HUMAN PERCEPTION

As will be remembered the 1962 Julesz study [4] had indicated that

the second-order probabilities measured by the cooccurrence matrices

could match at least the primitive level of human texture perception.

This result is called the Julesz conjecture. It states that a necessary

condition for two textures to be visually discriminable is that they have

different second-order probabilities. Further the theoretical comparison

study conducted by the authors had shown that cooccurrence matrices con-

tain more important "texture-context" information than the intermediate

matrices of any of the other texture algorithms tested.

Consequently, they seemed the obvious place from which to begin the

development of improved texture analysis methods. However at about the

time the measurement definition work was being conducted there were a

number of papers presenting counter examples to the Julesz conjecture [17-

22 ]. While some of the early patterns were, at best, bearly discri-

minable and hence unconvincing, the later counter examples were quite

distinct. One such convincing counter example is given in Figure 9.

Given the quality of the later counter examples it seemed appro-

priate to consider these textures in some detail since they seemingly

challenged the adequacy of the cooccurrence matrices to match a level

of human perception. For example Caelli and Julesz [18-20] had speculated

that second-order probabilities were not adequate unto themselves but

rather that other "detectors" were also required. In the experiments

they conducted a total of four detectors were supposedly found which

were required to augment the second-order probabilities. These so called

Class B detectors included a "quasi-collinearity detector", a "corner
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Figure 9. Two visually distinct textures which have identical
second-order probabilities.
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detector", a "closure detector", and a "granularity detector."

If the cooccurrence matrices could not be used to match a level of

human perception then the best alternative for developing improved tex-

ture analysis procedures might be to attempt to create a totally new

methodology. Consequently, a study was begun to consider the known count-

er examples. After this study started Gagalowicz [ 21,22] announced a

revised form of the Julesz conjecture. This revision stated that a

necesary condition for two textures to be discriminable is that they

have different "local" second-order probabilities, i.e., second-order

probabilities computed over a small region of the image. The previous form

of the conjecture had involved "global" statistics, i.e., computed over

a very large area. The results reported by Gagalowicz coincided with

those that had thus far been obtained in the authors' study, hence they

tended to reinforce one another. Therefore the most obvious conclusion

was that the second-order probabilities gauged by the cooccurrence matrices

were capable of matching a level of human perception. The only difficulty

being the determination region size that should be used to estimate the

appropriate local probabilities.

Consequently the research focused on finding ways to estimate the

size region which should be used to insure that the resulting "locally"

computed second-order probabilities would allow the discrimination of

these textures. In many respects this work paralleled that which yielded

a method for determining the unit pattern of periodic textures. The basic

idea was the same and that was to see if "globally" computed cooccurrence

matrices contained information on the size of area which should be used

to do a "local" analysis. In the case of periodic textures the global

analysis yields the unit pattern size and shape. In this instance re-

gions having the same size and shape as the unit pattern seem the most
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appropriate for a local analysis. The question to be addressed is whether

a global analysis of these very special texture pairs would yield the most

appropriate size over which a local analysis should proceed.

Actually an attraction for applying this global/local analysis pro-

cess to the known counter examples was that it offered a unusual opportunity.

The global analysis of most naturally occurring textures is usually all

that is required to allow their discrimination. This follows from the fact

that most natural occurring textures have different second-order proba-

bilities. On the other hand a global analysis of the counter examples will not

allow discrimination. Rather a local analysis must be performed. Con-

sequently the thought was that the study of these textures might result in

some useful information on the global/local analysis process itself.

For purposes of this discussion one can divide the known counter

examples to the Julesz conjecture into two groups. One group is composed

of structured textures. An example from this group is shown in Figure 10.

A texture from this group is made up of the regular placement and random

rotation of some elementary pattern. A visual analysis of such textures

allows the determination of a region size which when regularly placed will

always contain the rotated version of the elementary pattern from which

the texture was generated. One of the nice characteristics of these

textures is that one knows exactly what the output of the global analysis

should be. In the case of the two textures shown the output should be a

specification for a square region of whose sides correspond to the regular

spacing of the rotated elementary patterns.

The other group is called the random patterns. An example of a

texture pair from this group is shown in Figure 9. Note the size region

which should be used to do the local analysis of these patterns is not so
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Figure 10. A counter example to the Julesz conjecture which is a
a member of the so called structured group of counter-
examples.
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obvious. Indeed it is not clear what the region size should be at all.

Hence it is not clear what the output of the global analysis process should

be.

First, consider the structured group of counter examples. Because

each texture in this group is generated by regularly placing and then random-

ly rotating an elementary pattern [23] it can be argued that globally computed

cooccurrence matrices contain information which will allow the determination

of the regular placement rules used to generate the texture. The method

for making this determination proceeds in a matter analogous to the deter-

mination of t period parallelogram unit pattern of periodic textures.

Experiments were conducted on a number of such textures and it was found

that such was the case. The result being precisely what one would want.

Further it is of interest to note that once the region size was established

over which the local analysis should proceed, it was possible to perfectly

discriminate the counter examples considered based on the values of the

cooccurrence matrices computed from the local region size selected.

The random group on the other hand contains a number of texture pairs

which for each pair and any d and e, the values of the second-order prob-

abilities are equal to a constant, the same constant for all d and e.

In such cases it would appear that a global analysis contains no information

about the scale of region that should be used in the local analysis. Con-

sequently the research concentrated on these texture pairs.

The method of procedure was to consider for each texture pair this

classification accuracies obtainable using various region sizes. The

objective was to determine whether there was a "best" size region over

which the local analysis should proceed. For a given texture pair and

for each region size considered a theoretical lowest rate of misclassifica-
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tion was computed. the theoretical lowest rate was based on the analysis

of every possible pattern which could appear in a square region whose

side is n pixels long. Each possible pattern was converted into a

measurement vector of length n2 where each element of the measurement

vector was the gray level value of a point in the region. Considering

every possible pattern allowed the distribution of the measurement vectors

to be determined. Then a Bayesian decision procedure was employed to

yield the minimum possible error rate.

Similarly for each region size considered cooccurrence matrices were

extracted from every possible pattern for both textures and a probability

distribution of the cooccurrence matrices was obtained for each texture.

Based on these distrubutions a minimum error rate was calculated.

Figure 11 shows a typical set of results obtained. For this particular

texture pair the theoretical rate of misclassification goes down quite

rapidly as the region size increases. Further as the region size increases

more 6 values can be used to calculate cooccurrence matrices. This figure

shows that as more of these 6 values are used the error rate obtainable

using the cooccurrence matrices also decreases.

A natural interpretation of the data shown in the figure is that

the larger the region size used the better the classification accuracies

obtainable albeit the fact that more and more 6 values may have to be

used to get the improved accuracy. Given this realization the natural

way to interpret the global analysis results is that s(i,j,6) = c for

all i,j and 6 implies that a large region should be used in performing

local analysis.

Under this interpretation the evidence indicates that a global analysis

always contains information about the scale at which a local analysis should

proceed. If this result can be further verified, a substantial improvement

in image segmentation methods could result.
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Figure 11. The theoretical versus actual rate of misclassification. The

classification rates are shown as a function of region size.
As can be seen when only one d value is used in computing
cooccurrence matrices, namely d = 1, an error rate of 50%
is obtained for all region sites n. When two , alues are
used, namely, d = 1 and d = 2, an error rate of 25% is obtained.
Again this misclassification rate seems independent of n.
Finally notice that when three values of d, namely, d = 1,
d = 2, d = 3 and d = 4 are used, a misclassification rate of
3.61% is obtained.
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6. IMAGE SEGMENTATION AND TARGET DETECTION

USING TEXTURE OPERATORS

Given that the cooccurrence matrices can be used tQ match a

level of human performance the next problem it seemed appropriate to

investigate was how measures defined off these matrices could be used to

perform image analysis tasks. Since the authors have long felt

that texture analysis methods could be used in image segmentation, the

research effort turned to developing methods for employing measures

defined off the cooccurrence matrices to segment scenes. The procedure

developed is reported in [24]. Also described in [24] are the results ob-

tained in using the procedure to segment a complicated high resolution

urban scene. Consequently in this section only a general description

of the procedure will be presented together with some motivation for the

strategy employed.

Classically segmentation methods have been based on detecting edges

or gauging uniformity by examining the histogram of the gray levels [25).

The cooccurrence matrices are known to contain both edge information as

well as the first-order probabilities of the gray levels. Hence primitive

operators based on these matrices would seem the logical generalizations

of what has been used in the past. Consequently they offer the possibility

of substantially improved the segmentation methods.

Texture is a property of a region. A texture pattern is composed of

unit patterns and placement rules [14]. Viewed in this light the segmen-

tation problem becomes one of analyzing macro- and micro-textures where

the macro-texture is the interplay among the unit patterns and the place-

ment rules and where the micro-texture is the pattern of the individual

unit patterns which may themselves be textured. The idea was to employ
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the same basic operators to each problem. If this could be accomplished

a uniform data structure and analysis procedure could be used. Such

uniformity should provide a better structured segmentation procedure.

There arebasically two approaches to image segmentation. These are

boundary detection and region formation [26,27,28,291. Of these, region

formation approaches are best suited for use with texture operators since

these operators, inherently, characterize the qualities of a region. Region

formation approaches can utilize either split, merge, or split and merge

techniques. A merge procedure is a bottom-up approach where small regions

are combined based on their perceived uniformity. Unfortunately, the

statistical characterization of small regions is less reliable than for

larger ones. Further in complicated scenes, such as urban scenes, small

regions could belong to anyone of a large number of primitive clases

such as grass, concrete, car, tree, etc. Combining these primitives to

form a more meaningful grouping, i.e., commercial area, residential area,

etc., would require a substantial reliance on semantic information.

Providing such information is a difficult task.

A top-down procedure, such as a split procedure, seems to be best

suited for use with texture operators since classification accuracies

obtainable using texture analysis methods usually decrease as a function

of region size. Therefore it is appropriate to use as large a region as

possible and divide it as necessary. Further for an early vision system,

a split procedure seems most appropriate since it begins with a few broad

classes, i.e., commercial area, residential area, instead of a building,

street or tree. Because of the nature of the texture algorithm as these

large regions are split the texture measures computed from the smaller

areas become more sensitive to finer detail. Consequently, classes
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whose differentiation depends on finer detail can be handled later at

some higher level using smaller region size and perhaps contextural

information.

The proposed segmentation procedure is illustrated in Figure 12.

In this procedure the scene is initially divided into a number of disjoint

R square regions such that the edges of these regions form a grid over

the image. The size of the R1 regions is some predetermined fixed value.

Next a predetermined subset of the texture measures is computed from

each of the R1 regions. Given the values of the texture measures com-

puted from a particular R1 region, a decision is made as to whether this

region contains only one of a predetermined set of K1 classes. These

K1 classes are the ones the segmentation procedure has been taught to

recognize at level 1 of the process. If it is decided that the region

is so composed, then the region is labeled with the appropriate class

label. If the region is determined not to contain just one of the K1

classes then it is not assigned a class label. After all the R1 regions

have been analyzed, level 2 processing begins. The R2 regions are formed

by dividing the R1 regions which were not assigned a class label. The

division of each forms a number of disjoint square regions the edges of

which would form a grid over the R1 region being split. The size of the

R2 regions is some predetermined fixed value. Next a predetermined subset

of the texture measures is computed from each of the R2 regions. This

subset could be eofirely different than that used on level 1. Given the

values of these texture measures computed from a particular R2 region a

decision is made as to whether this region contains only one of a pre-

determined set of K2 classes. Note these K2 classes can be different from

the ones considered on level 1. Based on this determination a decision is
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made as to which class the region belongs or whether a further split is

required. This iterative procedure continues until some predetermined

level, say level R, is reached at which time all of the Rk regions are

classified into KZ classes. A pyramid structure of this process is

shown in Figure 13.

Region growing methods necessarily utilize clustering techniques

[25,30,31,32). Typically each subregion of the scene is characterized by a

t
measurement vector x = [Xl,X 2 ,... ,Xn] , where xi denotes the value of

nmeasurement i. Each such vector is a point in n-dimensional space E

Intuitively, measurement vectors computed from visually similar regions

should lie "close" together in En while measurement vectors computed from

visually disimilar regions should lie "farther" apart. Consequently, measure-

ment vectors computed from regions containing the same class should form

n
a cluster in En .

There are two types of clustering algorithms, supervised and unsupervised.

An unsupervised procedure is given no knowledge about the scene. The

algorithm must find the number and extent of natural clusters in the measure-

ment vector data obtained from the scene. Unsupervised procedures are

usually more computationally complex and usually less accurate than

supervised procedures 132]. They appear to require measurement vectors

composed of uniformly high quality non-redundant measures, a requirement

difficult to meet on all but the simplest image analysis probli-ms.

Supervised approaches can utilize rudimentary a priori knowledge of

the scene. Further they allow measurement selection to be performed so

that only the "best" measures in the measurement vector need be used in

making decisions. Supervised procedures force a predetermined structure where

every region must be classified as one of K preassigned classes. Any region
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Figure 1 3. The natural pyramid structure of the segmentation. (a) An example
of a three level segmentation where level 0 corresponds to the
whole image, level 1 the first level of the segmentation, etc.

(b) The regions formed during the segmentation. (c) A tree showing

how the regions of (b) were formed.

38



not properly belonging to any one of these K classes will be incorrectly

labeled, a most unfortunate property.

The proposed statistical segmentation procedure attempts to incorporate

the useful attributes of both supervised and unsupervised approaches. It

utilizes some knowledge of the scene by allowing one to select the classes

to be considered at each level of processing. This is accomplished

by selecting a training set for each class at each level where it is to be

considered. Thus measurement selection can be performed so that only the

best measures need be used in doing the segmentation. The statistical pro-

cedure provides the flexibility to determine whether a region is composed

of all or a part of a class different from the K preselected classes it

has been taught to recognize. The capability to detect such "unspeci-

fied" regions is an important part of the segmentation process [24]. The

statistical procedure also provides a mechanism for identifying regions

composed of two or more of the K preselected classes. These capabilities

enable it to split such regions and to examine the resulting smaller

regions using different classes and different level of detail.

The "clustering" method used is parametric in nature. Parametric

methods have the advantage over nonparametric procedures in that they

typically require fewer training samples. However this saving is obtained

at the expense of demanding that class populations be defined by the para-

meters estimated. For this segmentation method, however, this requirement

may not pose a severe limitation since classes whose population densities

vary markedly from that assumed should have most of their

as "unspecified" by the algorithm.

As was stated previously this procedure was applied to a high resol-

ution urban scene to test its capabilities. The test involved the use

39



of nine level 1 classes. These were residential, commercial, mobile home,

vehicle parking, water, dry land, multilane highway, runway and aircraft

parking. In effect a one level segmentation was performed. While ad-

mittedly this test does not represent a complete evaluation of this seg-

mentation procedure the results seem encouraging. The work to date all

show that more research should be done both in evaluating the techniques and

in optimizing the methodologies used in the procedure.

One interesting sidelight of the segmentation study was that the image

used allowed a test of whether texture measures defined off cooccurrence

matrices could gauge structure in complicated scenes. While a number of

examples of structural information gauged by texture measures are given

in [24] only one example will be presented here. This example involves a

vehicle parking area. Figure 14 shows the basic structure of this area

and gives the number of pixels between the various elements of the scene.

Figure 15 shows plots of the local homogeneity, energy and entropy measures.

The interesting point about Figure 15 is that it indicates that these measures

can be used to determine the distances between the rows of the parking lot.

Figure 16 shows the plot of the inertia measure computed along the same

direction as the local homogeneity, energy and entropy measures of Figure 15.

Note that no periodic structure can be detected in the inertia measure

plot. Hence this measure cannot be used to detect this structure. Further

it is interesting to note that the power spectrum cannot be used to detect

this structure either since the power spectrum and inertia measure are

essentially equivalent.

Target or object detection can be viewed as a special kind of image

segmentation task; a task very important in scene analysis. In this situation
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Figure 16. Plot of inertia measure computed from the vehicle parking

area along the 6 = 750 direction.
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the scene has to be segmented into regions contraining targets and those

without targets. While such a formulation limits the number of classes

to be considered to only two, target and background, it requires a

robust set of measurements to accomplish target detection in a variety

of backgrounds. Ideally, one would like to utilize measurements which

characterize only the targets and are invariant to the backgrounds in

the scene. In actuality, one is forced to find a target characterization

which is minimally sensitive to the background.

In a sense the target detection problem represents a logical con-

tinuation of the segmentation study reported above. Consequently, it

seemed appropriate to test whether texture measures could be used to

perform this task. While using texture measures to attack a target

recognition problem might seem inappropriate it is important to point

out that it can be shown that the texture measures defined using the co-

occurrence matrices are sensitive to shape. Hence their use is not at

all unreasonable.

To attack the target recognition problem special recognition soft-

ware was developed. The scheme used is based on the fact that a target

may appear against a number of po-sible backgrounds. What is desired

is a set of measures which are sensitive to the presence of a target

but insensitive to the background upon which it appears. Stated another

way one wants a set of measures which if a target is present x is a

member of the distribution defined by the class condition density

function p(xlT). If a target is not present then x should not be a

member of this distribution.

In our formulation we assumed p(xlTi was normal with mean vector

and covariance matrix E. Hence to determine whether x is a member
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of the distribution defined of p(xlT) only requires a Chi-square test

similar that described in reference 24.

The only problem that remained was selecting the subset of the texture

measures which is most sensitive to the target and least sensitive to

the background. This was accomplished by writing a special measurement

selection program. This forward sequential search procedure selects

not only the subset of measures which should be used but also provides

the value of X2  and hence the value of x which gives the best classi-d; a

fication accuracies.

The training data for the measurement selection program consists of

measurements computed from regions containing only background and regions

containing a target and background. For best results a representative set

of background samples are needed. Further one needs targets appearing

on as many different backgrounds as possible.

To test these procedures two experiments were performed. The

first was based on data from a single channel (.55-.60 micrometer) of

a multispectral scanner image and a digitized airplane. The background

classes were river, grass, trees, forest, coal yard and developed area.

Figure 17 shows the size of region used, the target on a forest background

and the forest region without the target. Table 1 shows both the training

and testing results. Note only one table is needed since the training

and testing results were identical.

The second experiment was based on data taken from a high

resolution scene. Only one background class was considered i.e.

runway/taxiway. Again the target was a plane. Table 2 gives the

training results obtained from experiment.

Both these experiments indicate that texture measures can be used
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II

COMPUITER CLASSIFICATION

Z TARGET BACKGROUND TOTAL ACCURACY

' TARGET 205 2 207 99.0 7

U

V

o BLCKGROUND 220't 206 99.0 7

> TOTAL 207 206 413

OVERALL CLASSIFICATION ACCURACY 99.0 7

MEASUREM[NT SELEC7[D FROrI 84 P'EASUREMWNTS'

1. Local Homogeneity f 1.1020) 7. Local Momogenelty (IC. )C2
0
)

2. LIntropy (14, 180) E. EntrODy ( 5. 2e
c
)

3. [itropy ( . 280) 9. Inertia (I0, 2C2
c
)

4. 1nertia E, 180) 20 Local hclogeneit) ( 5. IF,)
5. Entropy 12: 280) 12. Local hIrocenelty (24, ]PC)
C. Entropy 12, 020)

Table 1 The training results obtained when river, grass, trees, forest,
coal yard and developed area. Note the 10% jackknife testing
results were identical to the training results.
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COMPUTER CLASSIFICATION

Z TARGET BACKGROUND TOTAL ACCURACY0

0

TARGET 35 0 35 1001

-J _

U

BACKGROUND 0 40 40 300%

> TOTAL 35 40 75

OVERALL CLASSIFICATION ACCURACY ]00A

Meosurements Selected:

1. Energy (1,60") 4. Inertia (2,160")
2. Inertia (5,60') 5. Lnergy (1,150")
3. Cluster Prominonce (2,150")

Table 2. Training results obtained using real data. The background

class was runway/taxiway. Data was taken from the high

resolution urban scene used in the seFmentation study.
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to detect target. Further the procedures used are very similar to the

ones used in the segmentation procedure. This uses a unified type

favor to the scene analysis techniques which are evolving.

The results of the target recognition research is reported in [33].
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7. A THEORY OF TEXTURE MEASUREMENT DEFINITION

Historically, measures used in image analysis have either been

defined heuristically [1,2,3,5,7,8,34] or defined by assuming some

mathematical model for the hcene and then estimating the parameters

which define this model [35,36]. Unfortunately, both methods have

yielded unsatisfactory results. Note, measures defined in Equa-

tions 1-5 do not gauge all the important texture context information

in the cooccurrence matrices. This implies the need for another method

for defining measures. In this section a formal method for defining

texture measures will be outlined.

Currently the software required to employ the process is being

written. Further an initial set of perceptual ranking experiments have

been completed. It is hoped that within a few months new measures can

be defined using the process.

The framework for this texture measurement definition process is

based on the concepts of a perceptual transform, a perceptual space, a

measurement transform, a measurement space, and a similarity transform.

Let W be the set of all possible textures and let W denote an element

of W, i.e., WeW.

Defini ton 3: The perceptuat tra6oim, fl(W) = [ 1 (W), T3 (W),...,

71 (W)] t , is the vector of visual features "computed" by the human per-n

ceptual system. Two textures W1 and W2 are vZS.uaty diztinct iff

n(W I )  n(W2 ).

De inition 4: The ptceptuat Space, Q, is an n-dimensional vector

space where each axis corresponds to a visual feature "computed" by the

human perceptual system, i.e., each axis corresponds to a component of
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the perceptual transform 1(W).

The perceptual space, S2, and the perceptual transform are related

by fl: W-D. The perceptual transform and perceptual space play an im-

portant role in all image analysis measurement definition problems since

the ultimate objective of any algorithm is to at least match human per-

ceptual abilities.

Devition 5: The meauAement tzw4o m, M(W) = [m1(W),m 2 (W), .... mk(W)] t

represents the vector of texture measures computed from a texture where

each component m i(W) is a texture measure.

Vc6nition 6: The mea.6uAement pace, M, is a k-dimensional vector space

where each axis of M is a component of M(W). Clearly, M: W+M.

Given the desire to "match" human perceptual abilities the goal

of the measurement definition problem can be defined in terms of a simi-

larity transform.

VDfeiniton 7: A imn .avty tt'ano,6.M, E, is a correspondence which

maps the points of Q into the points of M, i.e., Z: f2+M.

Dc6tn'nton 8: The set of measurements defined by M(W) is said to match

human perceptual ability if Z(T(W)) = M(W) for all WcW.

The definition establishes the goal of a measurement definition

problem, namely, given E define the measurements M such that

E(R(w)) = M(W). (10)

Theoretically the "best" set of measures are those which satisfy

Equationl0 when E is the identity matrix. Unfortunately given the pre-

sent state of perceptual psychology and neurophysiology such an objective

is impossible to obtain. About all that can realistically be considered

is a broad class of possible E. The objective Is to abstract a set of
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ft requirements which define this class in such a manner that any transform

in this class will force a "high degree" of similarily to exist between

and M.

One such set of requirements on Z is as follows:

1. Z should be one-one;

2. ifV i and V are two vectors in Q then 111()- =(V2

JIV 1- V2 Hp where 11.11 is some norm on M and . is a

perceptual norm on Q.

Note that requirement 1 guarantees that for any two visually dis-

tinct textures, W1I and W2P M(W 1) 0 M(W2 ), a most desirable trait. Further

requirement 2 assures that perceptual similarity will be preserved with

textures being close together in 2 being also close together in M, a

trait desirable for image segmentation.

The last desirable trait for a measurementset is one that is hard to

phase in terms of Z. It expresses the desire for as few measurements

in the measurement vector as possible.

3. For each measure mi a component of M, there exist two visually

distinct textures, say W1 and W2, such that m i (W) m i(W 2 ) but

m(W 1 ) = m (W2) for all j 0 i.

Using these requirements one can define a formal measurement definition

procedure. What is required to use this procedure is that one specify the type

of intermediate matrix from which the measures are to be defined and the

general form one will allow the measures to take. For the purposes here

these specifications are given in the form of two underlying assumptions

of the process.

A6sumption 1: The cooccurrence Matrices contain all the important texture-

context information.

52

IIA
I m , I j



A wnption 2. The information concerning the visual qualities of texture

patterns that is contained in the cooccurrence matrices can be gauged

using measures which are linear with respect to the elements of these

matrices. That is only measures of the form

m = 1 a ijs(i,j,6 )
1]

need be used, where m is the measurement the aij are constants and

s(k,j,6) is an element of the cooccurrence matrix S(6).

While assumption 2 might seem very restructive, one would suspect

that the visual information contained in a cooccurrence matrix is related

to the size and dispersion of the elements of the matrix. Classically

the dispersion of elements or mass over some bounded region has been

measured using moments. Noncentral moments represent only one form of

possible linear function computed from the matrix S(6).

Recall that requirement 2 specifies that the measures preserve tex-

tural similarity, i.e., that given any' two textures W and W 2, IM(WI) -

M(w 2)11 = IPl(w) - I(W 2)1p where 11.11 is a norm on M and 11.11 is a

perceptual norm on &i. To verify this design objective one must have a

perceptual norm. The norm which seems best suited for the measurement

definition problem is called "the law of comparative judgment" developed

by Thurstone [37]. Using this norm, the experimental data used would

consist of a number of texture pairs. This ranking would be obtained by

considering n textures and forming every possible pairwise combination of

them. Using these pairs as data, two pairs would be shown to the observer

at a time. The observer would be asked to pick which of the two pairs is

the most visually distinct. Given the responses an overall ranking of the

relative discriminability can be obtained. Let ri be the relative ranking
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of texture pair i. Further let R - [r1,... ,rs] t, s - ( ) be the vector

of all the rankings.

Suppose Wli and W21, are the two textures which comprise texture

pair i. Given a measurement set M(W) the question is, does

IIM(W.i) - MW 2 1i)1I = r1

where rI is the ranking obtained from the law of comparative judgment.

Clearly, it seems unlikely that a measurement set can be defined such

that Equation 11 is exactly satisfied for i = 1,.. .s. Rather it seems

more probable that for each possible measurement set M(W)

I IM(W i) - I(w2i) II = ri + ei

where ei represents an error term. Consequently, the more reasonable

thing to do would be to pick the measurement set which minimizes

the sum of the squares of the error terms, i.e., a least square fit.

The above strongly suggest that a least squares procedure could be

used to define measures which would optimally satisfy requirement 2. To

use a least square method to define the measurements, i.e., the constants

aij, one must know the number of parameters for which one is solving. The

number of parameters translates into the number of measurements for which one

wants to solve. Unfortunately, initially the number of measurements that

is needed is unknown to us. The procedure is to first solve for only one

measurement, then two, then three, etc. Obviously as the degrees of freedom

increases the residuals will get smaller. Consequently, one cannot just

look at the sum of squares of the error terms to determine the number of

measures actually needed. Rather the procedure must be that after one solves

for K measures, one verifies whether or not K + I measures are needed.

This verification is similar to verifying requirements 1 and 3. This
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verification can be done using linear programming methods and a modified

form of the Gagalowicz texture synthesis procedure [38]. Incidently, it

is design objective 1 which demands that one verify that K + L measures are

needed before one solves for this many measures.

The above measurement definition process is clearly one which is com-

pletely driven by the available data, i.e., the set of texture pairs con-

sidered. As such the data represents a knowledge base upon which the

algorithm arrives at the measurement definitions.

Further, in creating the texture pairs to be used it is important to

keep in mind the purpose of the study. The desire is to create a set of

measurements which can watch the capabilities of spontaneous human texture

perception. It is desired that the measurements "resemble" the primitive

mechanisms of human perception. This point is important because it seems

highly unlikely that a simple "norm" on the measurement space regardless

of the set of measures used will ever be able to completely match the

human judgment of similarity. Consequently, in selecting the data, it seems

appropriate not to use real world textures. Judgments about familiar tex-

tures could be clouded by learned cognitive reactions rather than based

solely on the values of "primitive features" extracted by the visual system.

Hence we are using randomly generated patterns synthesized using, for

example, the a Markov generation procedure [ 4 ].

This research would seem to indicate that a formal method for defining

texture measures is possible. If it is, much of the guesswork can be taken

out of the measurement definition process and hence better, more robust

measures would result. Admittedly the procedures presented are based

on a number of simplifying assumptions. However, the validity of the

assumptions can be checked by examining the quality of the measures which
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result. This quality can be tested by using a classification result

comparison on a number of real world problems.

Interested readers are referred to [39).
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8. SUMMARY

During the course of this research project a number of fundamental

image analysis problems have been studied. These studies have been

directed toward improving our understanding of texture analysis and image

segmentation. Texture algorithms were studied because texture patterns

must be discriminated in a wide variety of scenes. We also have long

believed that texture algorithms have a wider applicability than tradi-

tionally thought and could form the bases for a general image segmenta-

tion algorithm.

The first part of our research investigated texture analysis

algorithms. A mathematical procedure for comparing algorithms was

developed. An improved algorithm called the SSA was developed which

provided for a statistical and structure analysis of texture patterns.

This formulation also showed that cooccurrence matrices in this form of

analysis could characterize all known texture patterns where difference

could be perceived by humans. Existing measures extracted from the

cooccurrence matrices were shown to be deficient. New measures were

defined and shown to measure structure such as periodicity of a texture

pattern. In order to more systematically study the measurement definition

problem a theory for defining texture measures was developed. This

theory forms a basis for defining measures which characterize perceptual

features used by humans. This theory should allow us to substan-

tially improve the SSA texture analysis system by defining improved

measures.

The image segmentation problem was also considered. An image seg-

mentation strategy appropriate for texture analysis was devised. A
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number of statistical procedures were devised for handling regions in

the segmentation process. Basically, these procedures allow one to

determine if the region is recognized, unrecognized or is a boundary

region. The system was tested on a high resolution urban scene. Good

results were obtained and many of the theoretical results predicted

for the texture operators were found in the data. The problem of lo-

cating isolated objects on targets was also studied. The procedures

developed for image segmentation were applied to this problem and yielded

good results.
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a special section at the IEEE Conference on Pattern Recognition and

Image Processing held in Dallas, Texas in 1981. Also a paper which des-

cribes these results will appear in Computer Graphics and Image Process-

ing.

More recently the investigators have been interacting with personnel

at Eglin Air Force Base. The point of interest here is using image anal-
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